
OpenPGP Email Forwarding Via Diverted Elliptic Curve
Diffie-Hellman Key Exchanges

Francisco Vial-Prado2 and Aron Wussler1
1 Proton Technologies AG, aron@wussler.it

2 Fortanix, francisco@vialprado.com

Abstract. An offline OpenPGP user might want to forward part or all of their email messages to third par-
ties. Given that messages are encrypted, this requires transforming them into ciphertexts decryptable by
the intended forwarded parties, while maintaining confidentiality and authentication. It is shown in recent
lines of work that this can be achieved by means of proxy-re-encryption schemes, however, while encrypted
email forwarding is the most mentioned application of proxy-re-encryption, it has not been implemented in
the OpenPGP context, to the best of our knowledge. In this paper, we adapt the seminal technique introduced
by Blaze, Bleumer and Strauss in EUROCRYPT’98, allowing a Mail Transfer Agent to transform and for-
ward OpenPGP messages without access to decryption keys or plaintexts. We also provide implementation
details and a security analysis.

Keywords: Proxy Re-Encryption · Forwarding · Elliptic Curve Cryptography · OpenPGP

1 Introduction

Proxy re-encryption is the process of transforming a ciphertext so that it can be decrypted by a different
party than was originally intended. This transformation is carried out without access to decryption se-
crets, plaintexts, or interactive communication with secret-key holders. First defined and designed by
M. Blaze, G. Bleumer, and M. Strauss [8], some forms of proxy-re-encryption have already been ap-
plied to ElGamal PGP-encrypted mailing lists [10] in the context of encrypted email. In fact, the most
highlighted application scenario is email redirection (see e.g. [6,3,4]), however, the current OpenPGP
protocol specification does not include support for this functionality and, to the best of our knowledge,
it has not been implemented in well-known encrypted email service providers.

A straightforward way to achieve delivery of forwarded encrypted email is to simply transfer pri-
vate keys, but there are several drawbacks to this practice. On one hand, if keys are transferred to
forwarded parties, an attacker controlling them would gain decryption rights to unforwarded emails,
which is not the case in unencrypted forwarding. On the other hand, private keys could be given to
a trusted Mail Transfer Agent (MTA) so that they can decrypt and re-encrypt to forwarded parties,
but this would contradict the trust model of end-to-end encrypted email services. The technique we
describe aligns with these trust models, proposing to distribute trust among forwarded parties and the
MTA. Security is provided as long as there is no collusion involving the MTA, i.e. we consider that
the MTA that takes care of the forwarding is a semi-trusted proxy that is not able to decrypt.

Using twowidely usedOpenPGP implementations [1,2], we verify the correctness of the technique
in the case where the MTA is also a Mail Delivery Agent (MDA), allowing automatic forwarding
between addresses entrusted to this MDA. However, in order to enable interoperability with other
agents, a certain key fingerprint consideration needs to be ensured by those services, requiring the
modification of a specific OpenPGP packet to indicate forwarding support.

In this paper, we adapt the technique presented in [8] based on diverted Diffie-Hellman key ex-
changes, which allows to emulate proxy re-encryption abilities in the context of symmetrically en-
crypted communications following current implementations of the OpenPGP protocol [11] and in-
volving no additional trust hypotheses, other than those expected naturally of any email forwarding.
We provide a security analysis and a simple simulation-based proof of the semi-honest security of the
forwarding protocol.

1.1 Forwarding PGP messages
The scenario we address is the following: Bob wants to allow Charles to decrypt email that was origi-
nally encrypted to Bob’s public key without having access to Bob’s private key or any online interac-

2 F. Vial-Prado, A. Wussler

tion. Naturally,MTAs should not have the ability to read the contents of suchmessages.We achieve this
by proposing a protocol that requires one-time communications between Bob, Charles, and a trusted
MTA: Bob generates two specific secret elements (a regular secret key, and a proxy factor), securely
transfers one to Charles, and the other to the trusted MTA.

With the proxy factor, theMTA gains the ability to transform any PGPmessage encrypted to Bob’s
public key into another PGP message that can be decrypted with the newly generated private key,
which is now held by Charles. At the same time, the MTA cannot decrypt the message, nor transform
it to another public key. The ciphertext transformation is also efficient; upon participating in ECDH
key exchanges, proxies need to store one random field element and two 16-byte key identifiers per
forwarding, and compute a single scalar multiplication on the elliptic curve per forwarded ciphertext.

Alice
MTA

(PB , c) (PB , c) Bob

kBC
(PC , c) Charles

kBD
(PD, c) Daniel

kDF
(PF , c) Frank

Fig. 1. Forwarding scheme – Alice sends a deferred ECDH ciphertext (PB , c) to Bob, which the authorized MTA transforms
into (PC , c), (PD, c) and (PF , c) using the proxy factors.

A BBS-like transformation in OpenPGP

The ciphertext transformation technique we describe here is an instance of the ElGamal-based proxy-
re-encryption scheme presented in the seminal paper by Blaze, Bleumer, and Strauss [8], and as such,
is bidirectional, meaning that if a proxy can transform ciphertexts from Alice to Bob, they also have
the inverse ability. While this property may be undesirable in most contexts, this is not an issue in
this OpenPGP application. If Bob forwards encrypted email to Charles with this technique, Charles’s
forwarded private key is used exclusively to decrypt Bob’s forwarded messages and he has no incen-
tive to receive messages encrypted to the corresponding forwarded public key, since they could be
potentially forwarded to Bob.

As indicated in [5], these schemes are also transitive, meaning that if Alice forwards an email
to Bob and Bob forwards it to Charles, nothing prevents proxies from forwarding Alice’s emails di-
rectly to Charles and not to Bob. More generally, any malicious forwarding MTA could compose re-
encryptions and selectively deliver messages to some recipients, ignoring the rest.While transitiveness
appears to be unavoidable here, such an MTA would be driving against its deliverability incentives
and may be detected by end parties.

The reason why this scheme was chosen over more modern re-encryption schemes is that an im-
portant objective is to maintain backwards compatibility with incoming messages. Furthermore, the
sender is often oblivious to automatic mail forwarding happening on the recipient’s side, so the cho-
sen scheme must be transparent from the sender’s perspective. The BBS technique provides a fast and
secure scheme that is compatible with this constraint.

An undesirable property that is partially mitigated by the use of the OpenPGP protocol, also
pointed out in [5], is the fact that any collusion between a forwarded party and the proxy results in
the knowledge of the forwarding party’s private key. Fortunately, OpenPGP’s structure prevents im-
personation attacks: If Charles above steals Bob’s private key with the help of a rogue MTA, he could
not sign messages in the name of Bob or authenticate as Bob. The forwarding key is derived from an

OpenPGP Forwarding via Diverted ECDH 3

encryption-only sub-key and does not serve for signing or authentication purposes, because it will not
be recognised as a signing or authenticating key by any compliant OpenPGP implementation. Never-
theless, in this case, Charles and the rogue MTA can decrypt every message encrypted to Bob they
can obtain, even old or unforwarded. As a mitigation against collusion attacks we advice to: use short
lived keys, avoid the use of filters, generate new keys upon forwarding set-up, and finally to deprecate
these keys when discontinuing the forwarding. In other words, we assume that either no collusion with
MTAs is possible, or that forwarded parties are trusted with unforwarded messages.

2 The forwarding scheme

While we describe the forwarding technique in terms of large subgroups of elliptic curves (given
the well-known implementation advantages e.g. [7]), the same technique and security proof can be
applied to any large subgroup where the Discrete Logarithm and Diffie-Hellman problems are hard,
and subgroup membership testing is efficient. In the remaining sections, let E be an elliptic curve
defined over a finite field F , and G ∈ E be a generator of a large subgroup of E of prime order n.

2.1 Asynchronous ECDH Exchanges

In existing implementations of OpenPGP, asynchronous Elliptic Curve Diffie-Hellman exchanges are
performed to address encrypted email messages (see figure 2), and work as follows. Let dB ∈ ℤn be
Bob’s private key andQB ∶= dBG ∈ E be Bob’s public key. Alice usesQB to generate an ephemeral
challenge P and a shared secret S ∶= dAdBG, that is known only to the two of them, as described in
figure 2.

Alice Bob

Long-term key pair (QB , dB)
QBRetrieves QB

Secretly picks ephemeral dA
Computes P = dAG,
S = dAQB = dAdBG

Encrypts c = EncS (m)
P , c Computes S = dBP = dAdBG

Decrypts m = DecS (c)

Fig. 2. Alice sends an encrypted message to Bob with the Deferred ECDH exchange. P : Ephemeral exchange value, S:
Shared secret, m: Plaintext, (P , c): Ciphertext

Our purpose is to show that a selected proxy transmitting a message encrypted to Bob can grant
access to the Alice-Bob shared secret S defined above to selected third parties, without the proxy
knowing S or leaking information about the forwarding to Alice or other involved proxies.

2.2 Diverting the secret

Let us now describe the BBS-like proxy transformation. Suppose Bob, whose long-term key pair is
(dB, QB), wants to forward incoming messages sent with the protocol defined in 2.1 to Charles. First,
Bob generates a new key pair (dC , QC) for Charles and computes the proxy factor

kBC ∶= dB∕dC mod n

for the proxy.
Note that it is not possible to guess dB from the sole knowledge of dC or kBC , since the mapping

of Fn onto itself given by �y ∶ x↦ xy−1 is bijective for every y ∈ F ∗n and both dB and dC are sampled
uniformly from a subset of Fn (in other words, they are indistinguishable from random elements of
a subset of Fn, depending on the chosen curve). This means that unless the MTA and the forwarded
party collude, they cannot access the secret dB.

4 F. Vial-Prado, A. Wussler

Now, given a plaintext m, an ephemeral DH shared secret between Alice and Bob S = dAdBG
(also, S = dAQB), and a ciphertext (PB, c) where c = EncS(m) encrypts m, the MTA’s objective is
to transfer the knowledge of S to Charles, such that he can decrypt c. To achieve this, upon receival
of (PB, c), the MTA first verifies that PB is not in a small subgroup of the curve, and then computes
PC ∶= kBCPB. Why is verifying PB necessary? Note that kBC = dB∕dC is not necessarily a private
key of the scheme. In particular, when interpreted as an integer, kBC may not be a multiple of ℎ, the
cofactor of the curve, and therefore the above computation is vulnerable to small subgroup attacks.
Namely, ifPB belongs to a small subgroup of the curve, thenPC is not necessarily 0, as it would be diPB
for any private key di. An implementation must abort if ℎPB ≠ 0 (for Curve25519 and Curve448, ℎ is
8 and 4 respectively). According to [12], “a large number of existing implementations do not [check
the all-zero output]”, but in this case, this is mandatory in order to avoid leakage of information about
the proxy factors.

Once PB is verified, PC = kBCPB is computed, the MTA transfers (PC , c) to Charles, who in turn
computes dCPC = dCd−1C dBPB = dAdBG = S, allowing him to decrypt.

In other words, the following equation is computed by involved parties:
S = dAdBG (Computed by Alice)
= dBdAG (Computed by Bob)
= dBd−1C dCdAG (Computed by Charles)

This procedure is described in figure 3. Note that Bob is able to set more than one forwarding address
by generating several valid private keys di and corresponding proxy factors. Given that the forwarding
MTA could be selectively forwarding mail to different users, e.g., using filters, or that the user might
want to interrupt the forwardings at different times, it is compulsory to use unique di values for every
different forwarded party.

The scheme is transitive. In fact, Charles can also forward emails further by repeating the same
procedure. Namely, he could generate a new key pair (QF , dF) that he shares with Frank, and compute
kCF to share with the MTA.

Alice Bob

Long-term key pair (QB , dB)

Generates dC
Computes kBC = dB

dC
mod n

QB

kBC

dC
Retrieves QB

Secretly picks dA
Computes PB = dAG,
S = dAQB = dAdBG

Encrypts c = EncS (m)
PB , c

Proxy
Verifies PB ∈ ⟨G⟩
Computes PC = kBCPB
=
(

dAdB
dC

mod n
)

G
PC , c

Charles
Computes S =

dCPC = dAdBG
Decrypts m = DecS (c)

Fig. 3. Forwarded ECDH exchange. Dotted exchanges are done over an existing secure channel. PB , PC : Ephemeral exchange
values, m: Plaintext, c: Ciphertext

2.3 Transformation Proxy as a multiplication oracle

In the procedure described above, Charles could gain access to an arbitrary stream of forwarded ci-
phertexts by sending messages to Bob using the same protocol, and use the forwarded message to
obtain information. In this case, the proxy acts as a multiplication oracle by the secret factor kBC :
Charles can choose any P̃ ∈ E and any valid ciphertext c̃, and submit (P̃ , c̃) to the proxy as a message

OpenPGP Forwarding via Diverted ECDH 5

to Bob. The proxy verifies and transforms the ciphertext, returning (kBC P̃ , c̃). Note that guessing the
secret factor is exactly solving ECDLP, thus Charles is not able to obtain any information about kBC ,
or ultimately dB, since kBC P̃ is indistinguishable from random. This is described in figure 4.

Proxy Charles

Chooses any P̃ ∈ ⟨G⟩, any
ciphertext c̃, and sends an
email to Bob

P̃ , c̃

Verifies P̃ ∈ ⟨G⟩
Computes kBC P̃

kBC P̃ , c̃
Receives kBC P̃

Fig. 4. The proxy acts as a scalar multiplication oracle when receiving messages from Charles.

We assume that malicious parties have complete freedom in submitting encrypted messages to
Bob, but note that this activity may be detected by Bob or other forwarded parties (since they also
receive these messages).

3 OpenPGP implementation

In this section, we describe some considerations regarding OpenPGP implementations for parties will-
ing to achieve the encrypted forwarding procedure described above.

3.1 Clients tasks

Assume Bob holds the following long-term keys in order to ensure deferred ECDH exchanges:
– An EdDSA long-term primary key, signing-only;
– An ECDH sub-key (QB, dB), encryption-only.

Setting up the forwarding In order to allow forwarding to Charles, Bob generates another key using the
same curve and parameters as his existing OpenPGP key, with both the EdDSA and ECDH parts. Let
(QC , dC) be the parameters of the encryption-only ECDH part, that Bob transfers securely to Charles.
Finally, Bob computes kBC = dB∕dC mod n and sends it to the MTA.
Fingerprint selection for KDF Asmandated in theOpenPGP specification [11], §13.5, a key-derivation
function is called in order to obtain the decryption key for a given message; in particular, the orig-
inal recipient fingerprint is needed as an input to this KDF. Therefore, if a message was originally
encrypted to Bob and forwarded to Charles, the decrypting implementation needs to use Bob’s fin-
gerprint when decrypting a forwarded message, instead of Charles’ fingerprint. In other words, Bob
must specify that the fingerprint associated toQB must be used when decrypting instead of QC in the
key-derivation function; otherwise, a fingerprint mismatch will not allow decryption, since QB was
used to originally encrypt this particular message.

This feature prevents tampering with the recipient, but since we need Charles to decrypt the cipher-
text, we propose to change the decryption by altering the field containing the KDF parameters in the
algorithm specific part for ECDH keys. By adding the original fingerprint and specifying a new version
2, whose field is already defined and “reserved for future extensions”, we emulate Bob’s fingerprint in
Charles’ decryption procedure. This would not reduce the tampering protection’s effectiveness, since
this information is embedded in Charle’s key, and at the same time backwards compatibility for the
sender. Concretely, we propose to alter variable-length field containing KDF parameters defined in
[11], §13.5 as follows:
– (Unchanged) a one-octet size of the following fields; values 0 and 0xff are reserved for future
extensions;

6 F. Vial-Prado, A. Wussler

– (Upgraded) a one-octet value 02, indicating forwarding support;
– (Unchanged) a one-octet hash function ID used with the KD;
– (Unchanged) a one-octet algorithm ID for the symmetric algorithm used to wrap the symmetric
key for message encryption;

– (Added) one-octet of flags with value 0x01, indicating to expect a key fingerprint;
– (Added) a 20-octet fingerprint to be used in the KDF function; for version 5 keys, the 20 leftmost
bytes of the fingerprint.

The forwarded parties’ OpenPGP implementation will use this value in the key wrapping instead of the
original fingerprint in order to obtain the right session key. Note that with this key pair, only forwarded
ciphertexts can be decrypted, and it does not allow anyone to decrypt messages encrypted to QB that
were not transformed by the MTA.

3.2 Server tasks

The MTA acts as the re-encryption proxy; it safely stores the factors kij along with the key IDs to
replace them in the ciphertext metadata. When a matching incoming email arrives, it alters the asym-
metric key packet corresponding to the correct key ID.

An incoming message from Alice to Bob has a Public-Key Encrypted Session Key Packets, that
wraps a symmetric key to decrypt the data packet. This packet contains:
– the curve OID, identifying the correct field;
– the ephemeral value PB;
– the key ID of Bob’s public key;
– the encrypted session key.
The first step is to parse the ephemeral exchange value PB and verify that it belongs to the subgroup

generated by G and not other small subgroup of the curve, as mentioned in section 2.2. This can
be achieved by generating any private key s and checking sPB ?

= 0, or equivalently, checking that
ℎPB

?
= 0, where ℎ is the cofactor of the curve (ℎ = 8 for Curve25519). If PB does not belong to

the large subgroup, the MTA must refuse to process this ciphertext, as the transformation would leak
information about the proxy factors.

Once PB is verified, the MTA replaces the ephemeral value of the above packet with kCPB. Also,
it replaces the key ID with Charles’s key ID to ensure that his OpenPGP implementation will accept
the packet for decryption (in OpenPGP terminology, the MTA eventually un-armors the message,
replaces both values, and armors the result).

The MTA can also implement filters based on the unencrypted fields, e.g., sender and recipient
addresses, or headers. These, of course, rely purely on trust, e.g., a misbehaving MTA could forward
every mail to Charles.

3.3 Implementation details

Using the widely-adopted GopenPGP [1] and OpenPGP.js [2], we emulated the forwarding and veri-
fied decryption correctness using those implementation APIs. Note that the setting up the forwarding
is essentially generating two private scalars, and ciphertext transformation is essentially one scalar
multiplication on the curve, therefore, there is negligible extra cost when supporting this feature.

Our curve of choice was Curve25519 [7,12], defined in the finite field of 2255 − 19 elements, and
whose base point G ∶ x = 9 generates a large subgroup of prime order

n = 2252 + 27742317777372353535851937790883648493.

Secret keys are sampled randomly from 2254 + 8{0, 1, 2,… , 2251 − 1}, and proxy factors are inter-
preted in Fn where n is the prime number displayed above. The design properties of Curve25519
makes it stand at a comfortable security level against all known attacks. It is worth noting that scalar
multiplication is implemented in constant time, since double and adding use the same formulæ. This

OpenPGP Forwarding via Diverted ECDH 7

consideration is important since any forwarded party can submit ciphertexts for transformation and
measure the time of the MTA’s reaction, with the objective of learning about proxy factors. Note also
that some modern OpenPGP implementations are not implemented in constant time for other curves.

The verification of small subgroup points in this particular curve is simply checking if 8P is 0, in
which case the proxy must refuse to transform the ciphertext.

4 Security Analysis

This section describes how the forwarding protocol is secure against eavesdroppers, semi-honest and
malicious adversaries, except for collusions between the proxy and any forwarded party (since they
can trivially recover Bob’s secret).

A simulation-based proof using the standard techniques from [13] is provided, and works as fol-
lows. We first define an ideal functionality  associated to the forwarding protocol Π. Given a set of
participants of Π, we describe their views and construct simulators that produce random correspond-
ing views. Finally, we show that the simulated views and the output of  (i.e., the ideal world) are
computationally indistinguishable from the execution of the protocol and its output (the real world).

This proof can be found in appendix A.We provide here an overall analysis of the security provided
by the forwarding protocol.

4.1 Threat model

The threat model we consider is an expanded version of the deferred Diffie-Hellman exchange:
– Bob, the original receiver, is always honest: he follows the protocol and samples from the correct

distributions.
– External eavesdroppers, who do not participate but may collect all values exchanged in the protocol
except for private keys and proxy factors (i.e., they know all elements in paths defined by bold
arrows in figure 3).

– F , the set of forwarded parties, may contain a subset of colluded parties that may also send mes-
sages to Bob and eavesdrop the protocol.

– Alice, the original sender, may collude with forwarded parties.
– T , the transformation proxy, could misbehave and/or collude with other parties.

We show that the only collusion that succeeds in attacking is when T colludes with a forwarded party.
This is expected, since they have multiplicative shares of Bob’s secret dB. To ease notation, for each
forwarded party Fi ∈ F , let ki ∶= kBFi be the proxy factor held by T , di ∶= dFi the secret scalar heldby Fi (generated by Bob), and Pi ∶= PFi the transformed shares (generated by the proxy).

4.2 Semi-honest parties

We discuss the semantic security of the execution of the protocol, establishing that no party can ex-
tract information about the plaintext or secrets from the elements collected throughout the execution,
assuming that other parties are honest (this includes ciphertexts and messages received during the
protocol).

External eavesdroppers Let us first discuss security against an adversary that is not participating in
the protocol nor controlling any party, but who intercepts all communications except for private scalars
and proxy factors (these communications are denoted by dashed paths in figure 3). Additionally, they
could send messages to Bob and eavesdrop the forwarding as described in section 2.3. Namely, they
could choose any ciphertext c̃ and a point X̃ of the large subgroup and eavesdrop kiX̃. Such a party
holds

QB = dBG Bob’s long term public key,
PB = dAG Alice’s DH share to Bob,
{PFi = dAkiG ∶ i = 1,… , |F |} set of transformed shares,
{kiX̃ ∶ i = 1,… , |F |} for chosen X̃ ∈ E,

8 F. Vial-Prado, A. Wussler

and is interested in extracting dAdBG (the session secret), any proxy factor ki = dBd−1i , or any named
scalar. Since proxy factors and secret scalars were generated honestly, note that this party holds val-
ues that are indistinguishable from uniformly random elements of the large subgroup. Obtaining any
named scalar solves instances of the ECDL problem, and producing the session secret dAdBG solves
the computational ECDH problem. This proves that the protocol is semantically secure against passive
eavesdroppers.

Transformation proxy The proxy collects the following elements throughout the protocol
QB = dBG Bob’s long term public key,
PB = dAG Alice’s DH share to Bob,
{ki ∶ i = 1,… , |F |} proxy factors,
X̃1, X̃2,… shares submitted by other parties (2.3).

It is clear that all these elements are uniformly random, provided by honest parties. Also, again by
the ECDH assumption, the proxy alone cannot produce the session secret dAdBG. Naturally, if the
proxy and Alice collude (and Alice is not a forwarded party), they can produce the session secret but
cannot extract Bob’s secret dB. In addition, the proxy cannot compute dB from the list of proxy factors:
recall that ki = dBd−1i mod n, but since these integers are interpreted in Fn, there is no notion of GCD
(namely, for every x, y, z ∈ Fn there exist u, v such that x = uz, y = vz).

Colluded forwarded parties Any forwarded party Fi that also submits a stream of points X̃1, X̃2,…
(as in sec. 2.3) collects

QB = dBG Bob’s long term public key,
di the decryption share,
Pi = dAdBd−1i G the transformed DH share,
kiX̃1, kiX̃2,… transformed DH shares of submitted messages.

Assume further that this party eavesdrop PB = dAG from the communication between Alice and
the proxy (or, equivalently, it is colluded with Alice). Note that, multiplying all DH shares by di, this
party holds exactly a DH triplet (dAG, dBG, dAdBG) and a set of ECDL samples (X̃, dBX̃) for chosen
X. A collusion between forwarded parties will only extend the list of ECDL samples, thus, security
follows from both the ECDL and ECDH assumptions.

4.3 Malicious parties
Malicious proxy Consider a rogue transformation proxy. It follows from the ECDH and ECDL as-
sumptions that a malicious proxy cannot extract secrets dA, dB, dFi , dAdB or dAdBG from its view
only. However, there are other possible misbehaviors of a malicious proxy: restrict the forwarding to
selected parties, alter proxy factors (sabotaging ciphertexts) or forward messages even if instructed
not to. We consider these actions as unavoidable for the forwarding functionality, probably detectable
in the context of MTAs, and not part of our trust assumptions.

Malicious forwarded parties Note that forwarded parties do not control any value in the protocol,
with the exception described in 2.3 where they send messages to Bob themselves and wait for the
proxy’s reaction. In this case, they only learn samples of the form kiX for chosen X ∈ E and proxy
factors ki (these are uniform elements of the large subgroup). Since this is not a deviation from the pro-
tocol, we include these samples in the semi-honest security proof, therefore, security against malicious
forwarded parties follows.

Collusion between the proxy and forwarded parties Any forwarded party that colludes with the
proxy can recover Bob’s key:

diki = did−1i dB = dB mod n.
We point out that, while recovering this private key may allow to decrypt other messages, it does not
allow to impersonate Bob and generate valid signatures, since compliant OpenPGP implementations
consider this key as encryption-only.

OpenPGP Forwarding via Diverted ECDH 9

5 Conclusions

In this article, we adapted the DH diverting techniques presented in [8] to provide the forwarding func-
tionality to an encrypted email service compatible with the OpenPGP protocol. This allows encrypted
emails to be securely forwarded with small modifications to an MTA server and the forwarded parties’
clients. In this context, the scheme we propose
– is transitive: Bob can forward his encrypted messages to Charles, Charles can forward them to
Daniel, and so forth;

– is non-interactive: Bob keys’ are sufficient to derive the proxy transformation factors without any
further exchange;

– is transparent: Transformed messages are indistinguishable from regular PGP messages;
– and distributes trust: We proved that the only way of gaining access to unforwarded emails is
for at least one forwarded party to collude with the MTA. In addition, we showed that any set of
forwarded parties cannot gain access to the private key without collusion with the proxy, since
they confront several independent instances of ECDL and/or ECDH problems.

We verified correctness of the forwarded decryption using two well-known OpenPGP implementa-
tions. While this can already be implemented to allow forwarding within users of the same mail
provider, we described a concrete proposal to the OpenPGP specification that would imply forwarding
compatibility between different implementations.

6 Acknowledgments

We thank Ilya Chesnokov, Eduardo Conde and Daniel Huigens for extensive discussions, helpful com-
ments and important insights on ECC and OpenPGP. We would also like to thank Ben Caller for his
help with proofreading the paper.

Aron Wussler thanks Daniel Kahn Gillmor for introducing him to proxy re-encryption schemes
for PGP mailing lists. Also, he wishes to acknowledge the help provided by Prof. Gerhard Dorfer, who
provided valuable help with algebra.

References

1. Gopenpgp. https://gopenpgp.org/
2. Openpgp.js. https://openpgpjs.org/
3. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under lwe. In: Proceedings of the 14th

International Conference on Progress in Cryptology INDOCRYPT 2013 - Volume 8250. pp. 1–18. Springer-Verlag,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-319-03515-4_1

4. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In: Fischlin, M. (ed.) Topics in Cryptology
– CT-RSA 2009. pp. 279–294. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

5. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure
distributed storage. vol. 2005 (01 2005)

6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure
distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (Feb 2006). https://doi.org/10.1145/1127345.1127346,
https://doi.org/10.1145/1127345.1127346

7. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. In: In Public Key Cryptography (PKC), Springer-Verlag
LNCS 3958. p. 2006 (2006)

8. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Advances in Cryptology
- EUROCRYPT ’98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding. Lecture Notes in Computer Science, vol. 1403, pp. 127–144. Springer
(1998). https://doi.org/10.1007/BFb0054122

9. Canetti, R.: Security and composition of cryptographic protocols: A tutorial (part i). SIGACT News 37(3), 67–92 (Sep
2006). https://doi.org/10.1145/1165555.1165570, http://doi.acm.org/10.1145/1165555.1165570

10. Khurana, H., Heo, J., Pant, M.: From proxy encryption primitives to a deployable secure-mailing-list solution. In: Ning,
P., Qing, S., Li, N. (eds.) Information and Communications Security. pp. 260–281. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

11. Koch, W., Carlson, B., Tse, R., Atkins, D., Gillmor, D.: Openpgp message format draft-
ietf-openpgp-rfc4880bis-09. RFC 4880bis, RFC Editor (March 2020), https://tools.
ietf.org/html/draft-ietf-openpgp-rfc4880bis-09, https://tools.ietf.org/html/
draft-ietf-openpgp-rfc4880bis-09

https://gopenpgp.org/
https://openpgpjs.org/
https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1145/1165555.1165570
http://doi.acm.org/10.1145/1165555.1165570
https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09
https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09
https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09
https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09

10 F. Vial-Prado, A. Wussler

12. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, RFC Editor (January 2016)
13. Lindell, Y.: How to Simulate It – A Tutorial on the Simulation Proof Technique, pp. 277–346. Springer In-

ternational Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_6, https://doi.org/10.1007/
978-3-319-57048-8_6

A Simulation-based proof

Using the simulation techniques from [9,13], we present a security analysis of the forwarding protocol.
This proof addresses the security against semi-honest adversaries, i.e., parties that correctly follow the
protocol and sample from the correct distributions, but use all available information to steal secret.
Also, a set of semi-honest adversaries can collude.

The idea of simulation-based proofs is to emulate any set of colluded participants by a random sim-
ulator residing in an ideal world in where a trusted party exists and the protocol is secure by definition.
The rationale behind this proof is that if it was possible to extract secrets from the views of colluded
parties, then it would be trivial to distinguish them from the simulator (just select the view that allow
to extract secrets). Conversely, if one cannot distinguish between the views, colluded parties cannot
extract secrets. Therefore, the objective is to show that the set of elements held by the semi-honest
parties (their view of the protocol) are indistinguishable from the elements held by the simulator.

A.1 Security definitions

Ideal functionalities A functionality is a process that maps tuples of inputs to tuples of outputs of a
protocol Π, one for each party involved. More precisely, for a fixed set P = {P1,… , Pk} of k parties
participating in the protocol, functionalities are k-ary functions  ∶ ({0, 1}∗)k → ({0, 1}∗)k mapping
inputs to outputs of Π. We write  = (f1,… , fk) where each fi is a k-ary function that outputs a
string. In addition, if  computes the desired outcome by means of a trusted party in an ideal world
that can communicate over perfectly secure channels with all participants, we say that  is an ideal
functionality.

Views Given an execution of a protocol Π on inputs  = (x1,… , xk), the view of party Pi consists
in all elements accessible to Pi throughout the protocol:

viewPi() = (xi, ri, mi1,… , mij),

where xi is Pi’s input, ri is the content of its internal random tape used to sample elements, and mijis the j-th message it received. Given a set of colluded parties, their joint view is defined as the tuple
consisting in the concatenation of their views. Also, let outputPi() be the elements held by party Pi
identified as the output of the protocol (note that the inputs or outputs may be empty for some parties).

Simulators Let Π be a protocol with inputs  = (x1,… , xk). A simulator is a PPT algorithm that,
given an input xi corresponding to a party of the protocol, produces a tuple simi(xi) similar to the view
of this party. A joint simulator takes a set of inputs and produces a tuple similar to the concatenation
of the corresponding parties’ views.

Simulation-based proof Following [13], our notion of security is based on emulating ideal function-
alities defined by the forwarding protocol. This means that, given a protocol Π with inputs  , an ideal
functionality  computing the output ofΠ(), and a set of semi-honest colluded parties, we construct
a simulator that takes the inputs of these parties and produces a random joint view. We then show that
these views along with the output of the protocol (i.e., the real world) and the simulator along with the
ideal functionality result of these parties (i.e., the ideal world) are computationally indistinguishable.
For instance, when simulating party i, we show that

(viewPi(), outputPi()
)

≃
(simi(xi), fi()

)

and similarly for joint views of colluded parties, achieving the proof.

https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6

OpenPGP Forwarding via Diverted ECDH 11

A.2 Forwarding ideal functionality

Consider parties Alice, Bob, T (the proxy) and Charlie (the forwarded party). As before, let � be the
distribution of ℤ that samples private keys uniformly from a subset of ℤ, according to the security
requirements of E (for instance, in Curve25519 [7], private keys are random samples of the form
2254 + 8m for some m < 2252). Assume Alice sends a message (PB, c) to Bob, and Bob’s public key is
QB = dBG.

A basic forwarding ideal functionality could be given by
(

(PB, c), (QB, kBC , dC), ⋅, ⋅
)

↦
(

⋅, ⋅, ⋅, (PC , c)
)

such that dCPC = dBPB. This works since Charlie receives dC at some point in the protocol, and can
decrypt c given S = dCPC . However, note that this functionality does not take into account multiple
forwarded parties, nor the fact that those parties can also submit messages to Bob (as in section 2.3).
Recall also that, for each forwarded party Fi ∈ F , we note by ki ∶= kBFi the proxy factor held by T
and di ∶= dFi the secret scalar held by Fi.
Definition 1. Consider parties Alice, Bob, T (the proxy) and F = {F1,… , Fm} (the forwarded par-
ties). Let

 ∶= (A,B,T ,F1 ,… ,Fm)

be the input of the protocol where:

A ∶= PB, c Alice’s message,
B ∶= QB, (ki, di)mi=1 Bob’s public key, proxy

factors, and secret shares,
T ∶= ⋅
F1 ∶= (X1j)

n1
j=1 F1 sends n1 messages to Bob as in 2.3,

⋮
Fm ∶= (Xmj)

nm
j=1 Fm sends nm messages to Bob as in 2.3.

The forwarding functionality is  = (A,B,T ,F1 ,… ,Fm) where:

A ∶  ↦ ⋅
B ∶  ↦ c, dB, PB, ((Xij)

ni
j=1)

m
i=1

T ∶  ↦ ⋅
F1 ∶  ↦ c, d1, P1, ((k1Xij)

ni
j=1)

m
i=1

⋮
Fm ∶  ↦ c, dm, Pm, ((kmXij)

ni
j=1)

m
i=1

such that d1P1 = d2P2 =⋯ = dmPm = dBPB.

Note that for every messageXij sent as in 2.3, forwarded parties also receive an encryption cij of some
message. Without loss of generality, we omit these encryptions from the ideal functionality, since
these are trivial to simulate and provide no information to attackers (as they are simply transmitted
unchanged throughout the protocol).

More precisely, following section 2.3, forwarded parties pick any message m̃ and a secret key
d̃ ← � , set S̃ = d̃QB where QB is Bob’s public key, and let Xij = d̃G, cij = EncS̃(m). Instead,
without loss of generality, we let forwarded parties freely choose Xij as an input to the protocol.

A.3 Security against colluded, eavesdropper semi-honest parties

Simulating the semi-honest proxy According to the protocol described in section 2.2, we have the
following view of the proxy throughout the protocol:

viewT () =
(

⋅, c, PB, k1,… , km, (Xij)ij
)

12 F. Vial-Prado, A. Wussler

where each ki was provided by Bob (for the sake of notation, (Xij)ij consists in all points chosen by
forwarded parties, in definition 1). Indeed, for each i, Bob sampled di ← �, ki ∶= dB∕di mod n,
and sent ki to the proxy. Now, consider the simulator that samples y ← � , xi ← � , and zi ← � for
i = 1,… , m, a tuple of random points (X̃ij)ij and sets

simT (T) ∶=
(

⋅, c, yG, x1z
−1
1 ,… , xmz

−1
m , (X̃ij)ij

)

.

Recall that (i) there is no input or output for T in this protocol, and also (ii) all other parties behave
honestly in this case (in particular, Xij are uniformly random points of the curve). Given these facts,
it is straightforward to see that viewT () and simT (T) are computationally indistinguishable.

Simulating forwarded parties As described in section 2.3, each forwarded party Fi computes the
session secret S = diPi from the output, and also has a stream of pairs of the form (Xij , kiXij) ∈ E2
for chosen Xij (this is the result of sending messages encrypted to Bob and parsing the forwarded
ciphertexts).

(viewFi(), outputFi()) =
(

(Xij)
ni
j=1; c, di, Pi, (kiXij)

ni
j=1

)

Note that, since there are no intermediate values computed by forwarded parties, a simulator that can
access the input and output of a forwarded party can simulate it trivially. In this case, we have simply

(simFi(Fi),i()
)

≡
(viewFi(), outputFi()

)

.

Naturally, the joint view of colluded forwarded parties is also trivially simulated by the joint simulators.

Simulating colluded, eavesdropper forwarded parties Additionally, let us assume further that this
party eavesdropped the share PB = dAG from the communication between Alice and the proxy, and
recall that they also have the public key QB = dBG. Such party has the following view and output:

(viewFi(), outputFi()) =
(

(Xij)
ni
j=1; dAG, dBG; c, di, Pi, (kiXij)

ni
j=1

)

Consider the simulator that samples x, y← � and sets
(simFi(Fi),i()

)

=
(

(Xij)
ni
j=1; xG, yG; c, di, Pi, (kiXij)

ni
j=1

)

.

The only distinct elements are dAG, dBG and xG, yG. Note that, since diPi = dAdBG, a DH triplet
(dAG, dBG, dAdBG) can be composed in the view. The simulator, on the other hand, can compose the
tuple (xG, yG, dAdBG). However, since dAdBG is uniformly random, this tuple is indistinguishable
from a proper DH triplet (xG, yG, xyG) by the ECDH assumption. It follows that the view and the sim-
ulator are computationally indistinguishable. It is straightforward to extend the simulator and address
the case where multiple semi-honest forwarded parties collude: The joint view and output will only
have more independent ECDL samples of the form (X, kiX) and parties can compose the same ECDH
triplet (also, note that the additional samples di, Pi of the form are also accessible by the simulator,
and the same argument holds).

Putting all these cases together, it follows that the protocol securely computes  in presence of
semi-honest, colluded adversaries.

	OpenPGP Email Forwarding Via Diverted Elliptic Curve Diffie-Hellman Key Exchanges

